If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=120
We move all terms to the left:
15x^2-(120)=0
a = 15; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·15·(-120)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*15}=\frac{0-60\sqrt{2}}{30} =-\frac{60\sqrt{2}}{30} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*15}=\frac{0+60\sqrt{2}}{30} =\frac{60\sqrt{2}}{30} =2\sqrt{2} $
| 19y+18=-1 | | 5h+3=-7 | | 3x^2+5x=68 | | d/4+5=1 | | p/5-20=-19 | | -6(2-x)=5(2x-3) | | 8(x+76)=53 | | 3j-19=-13 | | 0.5x=0.5x | | 7=x/5-6 | | 5/7x=15/28 | | 7x×12=2(4x-5) | | X+3y=22.85 | | 4m=2m+7 | | 3(6d+8)=24+18d | | -14+3(3x+10)=7(2x+4)+x | | A(n)=12+3(n-1) | | -10(x-5)^2+12250=0 | | -10(x-5)^+12250=0 | | 8-6.2x=-23 | | 2b+13=17 | | 3x^2-2=-2 | | -10x^2+100x+12000=0 | | 4w-(w+29)=3(w+5)-(2w+4) | | -34=1/2m-9 | | (n-2)-2(n-3)=3(2n+1)+1 | | 2(x=+12) | | y-105/6=111/8 | | (24+x)*(600-12*x)=0 | | (30+x)*(400-10*x)=0 | | (24+x)*(600-112*x)=0 | | (30+x)*(400-10*x)=0 |